
The FluxReader Framework

Gareth Kafka

Department of Physics
Harvard University

August 18, 2014

Abstract

This technical note details the FluxReader package. The framework and its purpose are

first introduced. Next, the steps necessary to set up and run the framework are discussed.

Finally, the internal mechanics and code to FluxReader are described. This note is intended

for developers and contains information unnecessary to general users. It is current as of

revision 5.

i

Contents

Abstract i

List of Figures iv

List of Tables v

1 Introduction 1

2 Framework Setup 3
2.1 Access and Permissions . 3
2.2 Setup . 4
2.3 Compilation . 5
2.4 Running Macros . 7

2.4.1 ROOT Environment Setup . 7
2.4.2 Compiled ROOT Macros . 7

3 How FluxReader Works 10
3.1 Utilities . 11
3.2 Detector . 12
3.3 ParticleParam . 13

3.3.1 NuFlav . 14
3.3.2 Parent . 15

3.4 XSec . 16
3.5 Parameters . 20

3.5.1 Indices . 20
3.5.2 Parameters . 22

3.6 Var and Weight . 27
3.6.1 Var . 27
3.6.2 Weight . 29

3.7 Spectra . 30
3.7.1 Spectra1D, Spectra2D, Spectra3D . 33
3.7.2 SpectraCorrDet . 36

3.8 FluxReader . 39
3.9 Combiner . 42

3.9.1 SpectraCorrDet Combining . 47

ii

3.10 Reading Non-Dk2Nu Files . 48

References 50

iii

List of Figures

3.1 ParticleParam and Daughter Inheritance Diagram 14
3.2 Trapezoidal Integration for Cross Section Histogram 19
3.3 Spectra and Daughter Inheritance Diagram 31

iv

List of Tables

3.1 Detector Class Variables and Functions . 12
3.2 Detector Coordinate and Size Return Functions 13
3.3 Functions to Generate Cross Sections . 17
3.4 Parameters Class Member Remove Functions 23
3.5 Parameters Class Member Add Functions . 24
3.6 Parameters Class Member Indexing Functions 24
3.7 Parameters Class Private Index Setting Functions 25

v

Chapter 1

Introduction

FluxReader is a framework designed to read flux files and create plots from their contents.

It is specifically optimized to run over Dk2Nu files [1] and create large numbers of similar

histograms simultaneously and quickly. The design philosophy for FluxReader is to remain

as general and flexible as possible. More opaque code is hidden within behind the scenes

classes and functions. The result is that the end user only needs to use simple and easy to

use member functions to create powerful macros quickly. These macros can generate huge

assortments of plots efficiently using a very small amount of user configuration.

Dk2Nu files consist of a TTree with each entry containing information pertaining to a

neutrino ray [2]. Single histograms can be created quickly using the TTree::Draw method,

even allowing for the application of cuts and weights. However, studies often involve making

the many plots of the same variable with slightly different cuts, like distributions of parent pT

vs pz for each neutrino parent species and daughter neutrino flavor. This alone can generate

close to 30 histograms. The TTree::Draw method becomes very inefficient in these cases,

and FluxReader is designed for these purposes.

The FluxReader framework is independent of any single experiment. This note describes

how to access and build the framework, gives a detailed account of how the framework works,

and provides some details on building and running macros. In Chapter 2, a valid kerberos

1

ticket is assumed. The details of how FluxReader works are discussed in Chapter 3. This

chapter is intended for users that have a good knowledge of the C++ language and is written

at a level necessary for developers.

This note is current as of FluxReader revision 5 [3], Dk2Nu revision 81 [4], and ROOT

version 5.34 [5]. Individual files may not always be cited directly, but if not, they can all be

found in one of these repositories/reference guides.

2

Chapter 2

Framework Setup

Since FluxReader is independent of any single experiment, it exists in a repository on its

own. This chapter describes how to access the framework, what is done to set up and compile

the framework, and how to run macros once the framework is built. A valid kerberos ticket

is assumed for the remainder of this chapter (and for the remainder of this note, in general).

2.1 Access and Permissions

FluxReader is a subproject of NuUtils and exists in its own redmine project [6]. In order

to use the framework, the code must be checked out into a user’s local area. There are

two commands which can do this, one for general users, and a different one for developers.

Checking out the code is discussed in greater detail on the FluxReader Wiki [7].

All users must first decide where FluxReader will live in their local areas. It is rec-

ommended to put FluxReader in a user’s top level directory. For experiments with tagged

software releases, the framework can be put into a development release. If this is done, setting

up both the experiment environment and the FluxReader environment may cause warnings

to occur, as both may try to set the same environment variables or external products. This

is covered in more detail in Section 2.2. It is NOT recommended to put FluxReader in a

specific tag. This is likely to cause errors.

3

https://cdcvs.fnal.gov/redmine/projects/fluxreader
https://cdcvs.fnal.gov/redmine/projects/fluxreader/wiki/Setting_Up_and_Running_FluxReader#Checking-Out-and-Building-FluxReader-1st-Build

Once the user has decided where FluxReader will exist, ensures the directory exists, and

moves to that directory, the code can be checked out. For general users, the command is:

> svn co http : // cdcvs . f n a l . gov/ subver s ion / f l ux r e ad e r / trunk/FluxReader

This will check out a copy of FluxReader into the current directory. By checking out the

code with this command, a user can make local changes. However, these changes cannot be

commit to the FluxReader repository.

For developers, the code must be checked out differently.

> svn checkout svn+ssh : //p−f luxreader@cdcvs . f n a l . gov/ cvs / p r o j e c t s /\
> f l u x r e ad e r / trunk/FluxReader

Note that this is shown here for readability; it can (should) be entered on one line (and if

so, omit the trailing ‘\’ from the first line). Checking out the code in this fashion allows the

user (a developer) to make local changes and commit those changes back to the repository.

Anyone can attempt to run this command; however, it will result in an error (Permission

Denied) for users not listed as a developer on the redmine overview page [6].

2.2 Setup

In order to use FluxReader, a user must source the setup script, SetupFluxReader.sh by

running the following command.

> source SetupFluxReader . sh

This script sets up several ups products, including ROOT, Dk2Nu, and genie xsec. It

also sets up cmake, which is used to build the framework, and the environment variable

FLUXREADER PRIV, which is used to load the FluxReader library when running ROOT

macros. It is recommended to set up FluxReader in a fresh terminal session without setting

up anything tied to a particular experiment.

4

https://cdcvs.fnal.gov/redmine/projects/fluxreader

Instead of blindly setting up any of the above products, the script checks if any of their

associated environment variables are set. If they are, then the product is already set up,

and the script will warn the user of a possible version conflict. Otherwise, the script sets up

the correct version of the product. The version conflict might occur if a user has set up an

environment for a particular experiment; this often sets up a particular version of ROOT, for

instance. If a user attempts to run FluxReader after receiving the version conflict warnings

and subsequently has an error running the framework, the first step in solving the problem

would be to start a fresh terminal session and only set up FluxReader so it builds cleanly.

2.3 Compilation

Once FluxReader has been set up as described in Section 2.2, and assuming the user is still

in the FluxReader directory, the code can be compiled using the following two commands.

> cmake .
> gmake a l l

When the code is first checked out, only the following files will exist in the top level

directory (there are other files in the include and src directories).

> l s −alFGh
t o t a l 44K
drwxr−xr−x 7 gkafka 2 .0K Aug 14 10 :13 . /
drwxr−xr−x 3 gkafka 2 .0K Aug 14 10 :13 . . /
−rw−r−−r−− 1 gkafka 2 .4K Aug 14 10 :13 CMakeLists . txt
drwxr−xr−x 3 gkafka 2 .0K Aug 14 10 :13 Demo/
−rw−r−−r−− 1 gkafka 1 .3K Aug 14 10 :13 FluxReaderTemplate .C
drwxr−xr−x 3 gkafka 2 .0K Aug 14 10 :13 inc lude /
drwxr−xr−x 3 gkafka 2 .0K Aug 14 10 :13 l i b /
−rw−r−−r−− 1 gkafka 2 .1K Aug 14 10 :13 l o a d f l x r d .C
−rwxr−xr−x 1 gkafka 922 Aug 14 10 :13 SetupFluxReader . sh∗
drwxr−xr−x 3 gkafka 2 .0K Aug 14 10 :13 s r c /
drwxr−xr−x 6 gkafka 2 .0K Aug 14 10 :13 . svn/

The cmake command automatically generates a Makefile needed by gmake, as well as

several other output and log files. The user should not change any of these files. The gmake

5

command actually compiles the code. If the code is being built for the first time, the gmake

command will result in the library libFluxReader.so appearing in the lib directory. At the

top level, the following files will exist after compilation.

> l s −alFGh
t o t a l 88K
drwxr−xr−x 8 gkafka 2 .0K Aug 14 10 :16 . /
drwxr−xr−x 3 gkafka 2 .0K Aug 14 10 :13 . . /
−rw−r−−r−− 1 gkafka 13K Aug 14 10 :16 CMakeCache . txt
drwxr−xr−x 6 gkafka 4 .0K Aug 14 10 :16 CMakeFiles/
−rw−r−−r−− 1 gkafka 2 .7K Aug 14 10 :16 cmake i n s t a l l . cmake
−rw−r−−r−− 1 gkafka 2 .4K Aug 14 10 :13 CMakeLists . txt
drwxr−xr−x 3 gkafka 2 .0K Aug 14 10 :13 Demo/
−rw−r−−r−− 1 gkafka 1 .3K Aug 14 10 :13 FluxReaderTemplate .C
drwxr−xr−x 3 gkafka 2 .0K Aug 14 10 :13 inc lude /
drwxr−xr−x 3 gkafka 2 .0K Aug 14 10 :13 l i b /
−rw−r−−r−− 1 gkafka 2 .1K Aug 14 10 :13 l o a d f l x r d .C
−rw−r−−r−− 1 gkafka 20K Aug 14 10 :16 Make f i l e
−rwxr−xr−x 1 gkafka 922 Aug 14 10 :13 SetupFluxReader . sh∗
drwxr−xr−x 3 gkafka 2 .0K Aug 14 10 :13 s r c /
drwxr−xr−x 6 gkafka 2 .0K Aug 14 10 :13 . svn/

As long as the file Makefile exists, the user can perform a clean build by running the

following commands.

> gmake c l ean
> cmake .
> gmake a l l

However, if none of the file dependencies have changed, i.e., there are no new include or src

files and all of the include preprocessor directives are the same, then the cmake step can be

omitted. If the cmake line is necessary due to different dependencies, one may be required

to delete CMakeCache.txt before cmake will run again.

6

2.4 Running Macros

2.4.1 ROOT Environment Setup

Much like SetupFluxReader.sh sets up the appropriate environment at the terminal, load flxrd.C

sets up the appropriate environment for running macros in ROOT. Essentially, this means

specifying include file locations so ROOT can load the necessary libraries. One of the

first things that the script does is process a different script, load dk2nu.C, located in the

$DK2NU/scripts directory. That particular script makes sure ROOT can find the appropri-

ate Dk2Nu libraries. The next portion of load flxrd.C tells ROOT where to find the various

header files listed as includes, including ROOT files, Dk2Nu header files, and FluxReader

header files. Finally the script loads the FluxReader library, libFluxReader.so.

The script load flxrd.C is run as an interpreted script; i.e., without any ‘+’ sign after the

file name. Any scripts that will actually run FluxReader must be run as compiled scripts;

i.e., with a single ‘+’ sign after the file name. Both load flxrd.C and the compiled script can

be given to root as two arguments so long as load flxrd.C comes first. The example below

demonstrates how to run the FluxReader template script, FluxReaderTemplate.C.

> root l o a d f l x r d .C FluxReaderTemplate .C+

2.4.2 Compiled ROOT Macros

Compiled ROOT macros are what the user executes in order to run FluxReader. There are

several required pieces of code that are needed in these macros, and other recommended

ones. To discuss these necessities, the code from the template script FluxReaderTemplate.C

is reproduced below, with line numbers.

1 // This template s c r i p t i n c l ud e s a l l of , and nothing more than ,
2 // the ba s i c n e c e s s i t i e s f o r running FluxReader
3
4 #i f d e f CINT
5 void FluxReaderTemplate ()

7

6 {
7 std : : cout << ”Sorry , you must run in compiled mode . ” << std : : endl ;
8 }
9 #e l s e
10
11 // C/C++ Inc lude s
12 #inc lude <iostream>
13 #inc lude <s t r i ng>
14
15 // ROOT Inc lude s
16 #inc lude ”TFile . h”
17
18 // Package Inc lude s
19 #inc lude ”Detector s . h”
20 #inc lude ”FluxReader . h”
21 #inc lude ”Parameters . h”
22 #inc lude ” U t i l i t i e s . h”
23 #inc lude ”Vars . h”
24
25 us ing namespace f l x r d ;
26
27 void FluxReaderTemplate ()
28 {
29 // Fi r s t , we need to s e t up a Parameters ob j e c t
30 Parameters p(f a l s e) ;
31
32 // Add at l e a s t one de t e c t o r
33 p . AddDetector (knova fd) ;
34
35 // Next , we ’ l l c r e a t e a FluxReader ob j e c t
36 s t r i n g dk2nu loc = ”/ nuso f t /data/ f l ux /dk2nu/nova/2010/

f lugg mn000z200 i 20101117 . gpc f g r i d l owth /” ;
37 dk2nu loc += ”∗dk2nu . root ” ;
38 FluxReader ∗ f r = new FluxReader (dk2nu loc , 2) ;
39
40 // The FluxReader needs to generate something !
41 f r−>AddSpectra (p , ”enu” , ”Energy (GeV) ” , Bins (100 , 0 . , 1 0 .) , kEnergy) ;
42
43 // The l a s t th ing to do be f o r e running i s to s e t up an output f i l e
44 TFile ∗ out = new TFile (”/nova/ana/ us e r s / gkafka /FluxReader/

HelloWorld . root ” , ”RECREATE”) ;
45
46 // This func t i on loops over the f i l e s , and f i l l s a l l the histograms !
47 f r−>ReadFlux (out) ;
48 out−>Close () ; // Close output f i l e
49 d e l e t e f r ; // Clean up
50 }

8

51
52 #end i f

The code on lines 4-9 and 52 must enclose every compiled macro. They force the macro to

run in a compiled mode, as the ROOT C interpreter cannot handle some of the FluxReader

classes. The function that appears on line 5 must match the macro name, without the “.C”

file extension.

The code on lines 11-23 are all of the include files needed by the macro. All of the files

in FluxReader have this grouping of C/C++ files, ROOT files, package files, then other

external files, as necessary. Other scripts may need other files, but the ones shown here

are generally necessary for all macros. FluxReaderTemplate.C technically does not need the

iostream header, but it is generally a good idea for debugging purposes.

Everything in FluxReader exists in the flxrd namespace, so it is a good idea to include

line 25. While this is not necessary, omitting this line requires adding the namespace scope

to every FluxReader object used in the macro.

Lines 27, 28, and 50 enclose the main macro function. Just like line 5, the function on

line 27 must match the macro name without its extension.

A working macro requires a Parameters object with at least one Detector object, and a

FluxReader object with at least one Spectra added. The FluxReader object takes a path to

input Dk2Nu files as input to its constructor. This is all demonstrated on lines 29-41.

Once the necessary objects have been set up, the function FluxReader::ReadFlux can

be called with a TFile* or TDirectory*. This input specifies where the FluxReader output

will go, and is demonstrated on lines 43-47. Lines 48 and 49 are some manual clean up.

9

Chapter 3

How FluxReader Works

This chapter describes how FluxReader works internally. It is written at a level necessary for

a developer, and thus contains much more information than is required for an end user. The

various classes will be introduced from the bottom up, so if a particular class is dependent

on another prerequisite class through inheritance or friendship, the prerequisite class will be

detailed first. This means that the motivation for a particular design decision sometimes

becomes opaque; in these cases an attempt to describe this motivation is made as best as

possible.

Everything within the FluxReader framework is created in the namespace flxrd. Any

classes or functions that omit a namespace scope are assumed to be using this flxrd names-

pace. Any exceptions to this will explicitly show the namespace scope, including any refer-

ences to classes or functions in the std library. Lastly, all FluxReader header files exist in

the include directory, and all FluxReader cxx files exist in the src directory, though these

directory names are omitted when mentioned [3].

Some of the FluxReader classes and functions borrowed heavily from comparable ones in

the NOνSoft CAFAna framework [8]. Notably, the FluxReader Var and Weight classes were

derived from the CAFAna Var and Cut classes, the FluxReader Utilities function Wildcard

function comes from the CAFAna Utilities Wildcard function, and the FluxReader class

10

SetBranches function is derived from the BranchList function in the BrachList class defined

in the SpectrumLoaderBase class in CAFAna. The references are current as of revision 10606

of CAFAna.

3.1 Utilities

There are several functions defined within Utilities.h and Utilities.cxx that are used elsewhere

within the FluxReader framework. The most important function to the user is the Bins

function, which takes three arguments.

std : : vector<double> Bins (i n t nbins , double min , double max) ;

The Spectra class requires a std::vector<double> input for binning. When the user wants

to use nbins equally sized bins between min and max, this function quickly converts these

three parameters into a std::vector<double>.

The Wildcard function takes as input a std::string that may or may not contain shell

style wildcard characters, and returns a std::vector<std::string> that expands all of the

wildcard characters as the shell would. (This means that if there are no wildcard characters

in the input string, then the vector will have length 1.)

std : : vector<std : : s t r i ng> Wildcard (std : : s t r i n g f i l eWi l d c a rd) ;

This function is intended to allow the user to specify a group of input files by using a single

path with wildcard characters; however, the user is never required to use this function itself.

Instead, the FluxReader constructor calls this function after the user provides a std::string

input. On the other hand, the user can access Wildcard to check that the files specified are

what the user expects.

The last Utility function is the OverrideAddresses function. This function is only used

when reading non-Dk2Nu files, and is discussed in Section 3.10.

11

Table 3.1: The Detector class private variables, their type, and the public functions that
return each variable. The return functions listed return the variable as the same type as is
stored, each taking no inputs.

Detector Spec Type Variable Name Return Function
Name std::string fDetName GetDetName()

Nuclear Target std::string fTarget GetTarget()

Coordinates std::vector<double> fCoord GetCoords()

Size std::vector<double> fSize GetSizes()

Uses int fUses GetUses()

3.2 Detector

The Detector class defined in Detector.h and Detector.cxx stores information about a par-

ticular detector. This includes a detector name, the typical nuclear target, the detector

coordinates in the detector coordinate system in cm, the detector size in cm, and the num-

ber of times to smear a neutrino ray through the detector volume, hereafter referred to

as uses. All of these are stored in private variables. Both the detector name and nuclear

target are each stored as a std::string, the coordinates and size are each stored in a

std::vector<double> (each with length 3), and the uses is stored as an int. With the

exception of the uses, each parameter cannot be changed once the Detector object is con-

structed. Table 3.1 lists each private variable and its associated public member function

that can return the stored value. Both the detector coordinates and size can be accessed in

multiple ways, and Table 3.2 list them all.

Existing detectors are predefined in Detectors.h, and Detectors.cxx makes sure these

objects are built during compilation. However, custom detectors can be easily defined. The

Detector constructor takes an argument for each stored variable.

Detector (const std : : s t r i n g& det name , const std : : s t r i n g& target ,
const double& coordx , const double& coordy , const double& coordz ,
const double& s i z ex , const double& s i z ey , const double& s i z e z ,
const i n t& nuses) ;

As mentioned above, the uses is the only parameter that can be changed after a Detector

is constructed.

12

Table 3.2: All of the different methods for returning the detector coordinates and size.

Detector Spec Return Function Return Type

Coordinates

GetCoords()

GetCoordX()

GetCoordY()

GetCoordZ()

GetTCoords()

std::vector<double>

double

double

double

TVector3

Size

GetSizes()

GetSizeX()

GetSizeY()

GetSizeZ()

GetHalfSizeX()

GetHalfSizeY()

GetHalfSizeZ()

std::vector<double>

double

double

double

double

double

double

void SetUses (i n t nuses) ;

Allowing this parameter to change allows the user to change the default value of 1 in each

of the predefined Detectors. However, the Parameters class, which stores a list of Detectors,

also has a function to change the uses of a Detector, and users should use this version.

3.3 ParticleParam

The ParticleParam class defined in ParticleParam.h and ParticleParam.cxx contains infor-

mation about a particle. It stores a PDG value in a private integer, and a name or label

in a private std::string. Both of these parameters can be accessed by the publicly accessible

functions, GetPDG() and GetName(), respectively.

There are no base ParticleParam objects in the FluxReader framework. Instead, objects

are created of two other classes, NuFlav and Parent, both which inherit from ParticleParam,

as shown in Figure 3.1, and are defined and implemented in the same files as their common

mother.

13

flxrd::ParticleParam!

flxrd::NuFlav! flxrd::Parent!

Figure 3.1: The inheritance structure of ParticleParam and its daughter classes, NuFlav and
Parent.

3.3.1 NuFlav

The NuFlav class inherits from the ParticleParam class and stores information on neutrino

flavors. Predefined NuFlav objects exist for the electron neutrino, anti-electron neutrino,

muon neutrino, anti-muon neutrino, tau neutrino, and anti-tau neutrino.

The NuFlav class also introduces functions to manipulate vectors of NuFlavs. The

AllNuFlavs function creates a std::vector<NuFlav> while RemoveNuFlav removes entries

from a vector. Since a NuFlav stores both a particle name and PDG value, RemoveNuFlav

can be called using a particle name to remove, a PDG value to remove, or a NuFlav object to

remove. No matter which version is used, all NuFlavs that have a matching input parameter

will be removed.

std : : vector<NuFlav> AllNuFlavs (bool S i gnS en s i t i v e) ;

void RemoveNuFlav (std : : vector<NuFlav> &nuf lavs , i n t rmpdg) ;
void RemoveNuFlav (std : : vector<NuFlav> &nuf lavs , s td : : s t r i n g rmname) ;
void RemoveNuFlav (std : : vector<NuFlav> &nuf lavs , const NuFlav& rmflav) ;

The Parameters class uses these functions to create its own list of NuFlavs, so the user

does not have to use them directly. The boolean input to AllNuFlavs determines whether

or not to ignore neutrino sign. By default this option is true, meaning that the function will

create a separate entry for each flavor of neutrino and anti-neutrino. However, since the user

never directly uses this function, and Parameters does not give this as an option to the user,

in practice there will always be a splitting for neutrinos and anti-neutrinos.

Technically, the user can create additional NuFlav objects simply by specifying a particle

name and PDG to the NuFlav constructor. However, as will be discussed in the Parameters

14

class, these objects cannot actually be used.

NuFlav (std : : s t r i n g name , i n t pdg) ;

3.3.2 Parent

The Parent class inherits from the ParticleParam class and stores information on neutrino

parent species. Predefined Parent objects exist for the µ+, µ−, π+, π−, K+, K−, and KL.

There are also objects defined for the case that parent sign is ignored, i.e., the µ+ and µ−

are treated as a single µ. These objects are defined for the µ, π, and K. Note that the KL

is always considered separately from the charged versions.

The Parent class introduces functions to manipulate vectors of Parents, nearly identical to

those in the NuFlav class. The AllParents function creates a std::vector<Parent> while

RemoveParent removes entries from a vector. Just as with \verbRemoveNuFlav—,

there are three versions of RemoveParent.

std : : vector<Parent> Al lParents (bool S i gnS en s i t i v e) ;

void RemoveParent (std : : vector<Parent> &parents , i n t rmpdg) ;
void RemoveParent (std : : vector<Parent> &parents , s td : : s t r i n g rmname) ;
void RemoveParent (std : : vector<Parent> &parents , const Parent& rmpar) ;

The Parameters class uses these functions to create its own list of Parents, so the user

does not have to use them directly, as was the case with the versions within NuFlav. The

boolean input to AllParents behaves in the same way as before, and is also true by default

for the Parent case. When this option is specified as true or left as default, the Parent

objects that populate are all the sign sensitive objects mentioned above. When the input is

specified as false, each sign insensitive Parent object replaces the two sign sensitive objects

it represents. Unlike the case with NuFlav, the option to consider sign is preserved for the

user in the Parameters class.

The user can create other Parent objects simply by specifying a name and PDG for the

Parent constructor. The PDG value will need to be unique from any other Parent, however.

15

This will be discussed in more detail with the Parameters class.

Parent (std : : s t r i n g name , i n t pdg) ;

3.4 XSec

The XSec class defined in XSec.h and XSec.cxx is unique in the FluxReader framework in

that it gets its input from files that are not flux files. The reason the product genie xsec

must be set up is because XSec gets its cross section information from a file found within

the $GENIEXSECPATH directory, and this environment variable is set up when genie xsec

is set up. The file found using this environment variable has a particular structure. In

its top level there are only subdirectories, and there is one directory for each combina-

tion of neutrino flavor and nuclear target. The naming convention for these directories is

nu <flavor>(bar) <Atomic Symbol><Z>. Thus, for electron neutrinos scattering off of

hydrogen, the directory name is nu e H1, and for anti-muon neutrinos scattering off of iron,

the directory name is nu mu bar Fe56. Inside each directory, each cross section is contained

as a TGraph* and is named by its process, for example, tot cc.

When an XSec object is constructed, it takes no arguments.

XSec () ;

The constructor calls the publicly accessible SetXSecFileName function without specifying

its optional argument.

void SetXSecFileName (std : : s t r i n g ove r r i d e) ;

This function sets up the private variable fXSecFileName with the absolute path to the

cross section file. By leaving the optional argument blank, the default case using the

$GENIEXSECPATH environment variable is used. It is possible for the user to override this

option and specify a different file to use after an XSec object has been constructed, though

16

Table 3.3: Functions to generate cross sections and their input arguments and return type.
Neutrino PDG is entered as an int, Target Nuclei and Interaction Process are each entered
as an std::string, Cross Section Spline is entered as a TSpline3*, Number of Bins is entered
as an int, the Min and Max Bin Values are each entered as a double, and the Pointer to
Array of Bin Edges is entered as a double*.

Function Input Arguments Return Type

GetXSec
Neutrino PDG

Target Nucleus and Interaction Process
TSpline3*

GetXSecRatio
2 Neutrino PDGs

2 Target Nuclei and Interaction Processes
TSpline3*

GetGraph
Neutrino PDG

Target Nucleus and Interaction Process
TGraph*

GetGraphRatio
2 Neutrino PDGs

2 Target Nuclei and Interaction Processes
TGraph*

GetHist
Cross Section Spline

Number of Bins, Min and Max Bin Values
TH1*

GetHist
Cross Section Spline

Number of Bins, Pointer to Array of Bin Edges
TH1*

not recommended. However, this is not an option for generating the cross sections used to

fill each Spectra object.

At this point, cross sections can be generated from the file using several different func-

tions. These are listed in Table 3.3. GetXSec and GetXSecRatio are recommended for

general purposes, and this is what the rest of the FluxReader framework uses. However, as

the cross sections are originally stored as TGrpah* objects, GetGraph is actually the base

case.

When GetGraph is provided a neutrino PDG (int), nuclear target (std::string), and

interaction process (std::string), it calls the private helper function SetXSecGenStr with

these same arguments.

void SetXSecGenStr (i n t pdg , std : : s t r i n g tar , s td : : s t r i n g type) ;

This function uses the arguments to set the private variable fXSecGenStr with the relevant

directory and cross section process in the required format as discussed above. The TGraph*

is then pulled from the cross section file using the (publicly accessible) GetXSecFileName

17

and GetXSecGenStr functions.

std : : s t r i n g GetXSecFileName () ;
s td : : s t r i n g GetXSecGenStr () ;

When GetGraphRatio is called, it first pulls the two relevant graphs using GetGraph.

The input arguments to GetGraphRatio are two sets of the arguments that are supplied to

GetGraph, the first set being the numerator graph and the second set being the denominator

graph. It then checks that both graphs have the same number of points, and computes the

ratio, yN(x)/yD(x). There is no check that each point has the same x value.

A TSpline3* can be generated simply by providing its constructor with a TGraph*.

GetXSec(Ratio) does this by first creating a graph using GetGraph(Ratio). However, the

TSpline3* constructor can take optional arguments that constrain the spline’s endpoints.

There are two optional arguments to both GetXSec and GetXSecRatio that can set the value

of the lefthand, or low energy endpoint, and how this value is approached. See the ROOT

documentation for more information.

Both versions of GetHist behave in the same way. For each bin in the resultant histogram,

the input spline is averaged over the bin. Especially at higher energies, cross sections rise

approximately linearly with energy. This means that the area under the spline can be

approximated as a trapezoid. Instead of finding the area of one trapezoid covering a full

bin, each bin is split into a minimum of ten sections, and the areas of the trapezoid from

each section are summed. If a bin covers 1 GeV or less, then the bin is split into ten equal

sections. If the the bin covers more than 1 GeV, then starting at the low edge, the bin is split

into 0.1 GeV sections until the upper edge is within 0.1 GeV, and the last section covers the

remainder of the bin. This is shown in Figure 3.2. The sum of the areas of each trapezoid

within the bin is averaged over the full bin width, and the bin content is set to the result.

As a note, the trapezoid area is computed by using the XSecEval function. This is preferred

to the built in TSpline::Eval(Double_t x) function because XSecEval checks for negative

values and automatically sets these results to 0 instead of returning a negative value, since

18

	

Figure 3.2: The trapezoidal integration scheme used to calculate each bin for a cross section
histogram. Left: EA < EB ≤ EA + 1 GeV, so the bin is split into 10 equal sections. Right:
EC > EA + 1 GeV, so the bin is split into as many 0.1 GeV sections as possible and the last,
rightmost section covers the remainder of the bin.

cross sections must always be positive.

double XSecEval (TSpline3 ∗ s , double x) ;

When a user attempts to create a cross section, XSec automatically checks for valid

inputs. The input cross section file only has information for a finite set of neutrino flavors,

target nuclei, and interaction process, so if the user provides an input that will not match

anything in the cross section file, XSec will not try to create a cross section, but instead

provides the user with a list of acceptable inputs if the offending parameter was a neutrino

flavor or target nucleus. If the interaction process was invalid, XSec tells the user to use

the ListIntTypes function. This function outputs the relatively large list of acceptable

interaction processes.

void Lis t IntTypes ()

Three other private functions are used behind the scenes in XSec. The first is GetGraphMath.

TGraph∗ GetGraphMath (TGraph∗ g1 , double c1 , TGraph∗ g2 , double c2) ;

This function outputs a graph computed from c1 ∗ g1 + c2 ∗ g2. One of the acceptable target

nuclei is CH2, which is technically not found in the input cross section file. GetGraph(Ratio)

recognizes this and recursively pulls the graphs for C and H separately, then merges them

with GetGraphMath.

19

The other two functions are MakeXSecTitle and MakeXSecRatioTitle.

std : : s t r i n g MakeXSecTitle (i n t pdg , std : : s t r i n g tar , s td : : s t r i n g type) ;
s td : : s t r i n g MakeXSecRatioTitle (

i n t pdg1 , std : : s t r i n g tar1 , s td : : s t r i n g type1
i n t pdg2 , std : : s t r i n g tar2 , s td : : s t r i n g type2) ;

These functions are automatically called whenever any cross section plot is created. Nothing

glamorous happens inside these functions; they simply combine the input arguments to make

human readable plot titles. The ratio version does check whether certain inputs are the same

and simplifies the title accordingly.

3.5 Parameters

As mentioned previously, one of the design goals of the FluxReader framework is to create a

large amount of similar plots simultaneously. Specifically it makes plots of the same distribu-

tion for different sets of neutrino flavors, parent species, applied cross sections, and detector

locations. The Parameters class defined in Parameters.h and Parameters.cxx allows the user

to configure exactly what sets of parameters are used to generate each set of distribution.

It also has an indexing method that supports automatic looping through use of the Indices

class, also defined and implemented in Parameters.h and Parameters.cxx.

3.5.1 Indices

The Indices class stores eight private integers. Four represent the total number of each

parameter, neutrino flavors, parent species, cross sections to apply, and detectors; these are

labeled nFlav, nPar, nXSec, and nDet, respectively. The other four integers represent a

current index and are restricted to integers in the range 0 ≤ i<param> < n<param>, for

example, 0 ≤ iFlav < nFlav. (One exception of this is discussed below.) Indices has no

functions to change the ‘n’ variables, but Indices makes Parameters a friend class, so it can

update those values as necessary.

20

Indices defines a convention for a single master index combining each individual index. In

base 10, the number dcba is can be considered (a×1)+(b×10)+(c×10×10)+(d×10×10×10).

By analogy, the Indices convention considered the neutrino flavor like the units digit, the

parent species like the tens digit, the cross section as the hundreds digit, and the detector

as the thousands digit. However, unlike base 10, the multiplier is no longer a simple power

of ten. With nFlav neutrino flavors, the multiplier for the parent species is nFlav. The

multiplier for the cross section becomes nFlav×nPar, and so on. The full master index

formula is shown in Equation 3.1.

iMaster = iFlav +

nFlav × iPar +

nFlav × nPar × iXSec +

nFlav × nPar × nXSec × iDet (3.1)

The function Indices::GetCurrentMaster calculates and returns this value.

i n t GetCurrentMaster () const ;

Indices overloads three operators necessary for automatic looping, * (dereference), !=, and

++ (pre-increment). The dereference operator simple calls and returns GetCurrentMaster.

The not equal to operator takes an Indices object as input and compares the output of

its own GetCurrentMaster to the output of the input object’s GetCurrentMaster. The

pre-increment operator does nothing if iDet ≥ nDet. Otherwise, it starts by incrementing

iFlav. It then checks whether iFlav equals nFlav, and if so, it resets iFlav to 0 and

increments iPar. It performs the same check procedure using iPar, nPar, and iXSec, and

finally performs one last check procedure with iXSec, nXSec, and iDet. Thus, when the

Indices object has reached its maximum, iDet = nDet, and iFlav = iPar = iXSec = 0,

GetCurrentMaster would return the product nDet×nXSec×nPar×nFlav, and further use

of the pre-increment operator cannot increase past this special value.

21

3.5.2 Parameters

The Parameters class can generally be thought of to have two purposes, configuring the pa-

rameter sets for Spectra and performing operations on the current parameter set. To these

ends, Parameters stores a std::vector<NuFlav> of neutrino flavors, a std::vector<Parent>

of parent species, a std::vector<std::string> of cross sections to apply, a std::vector<Detector>

of detectors, and an Indices object. A Spectra will create a distribution for each set of pa-

rameters within the four vectors. While most of the vectors can hold any valid object, the

cross section vector will only contain entries that exactly match one of the outputs from the

XSec class function XSec::ListIntTypes, or the string "NoXSec".

When a user constructs a Parameters object, the constructor takes an input boolean to

determine whether to consider or ignore the sign of the neutrino parent, and this parameter

is stored in the private boolean fSignSensitive. The user can check what this variable is

set to using the function IsSignSensitive.

Parameters (bool S i gnS en s i t i v e = true) ;

bool I s S i g nS en s i t i v e () const ;

When reading Dk2Nu files, the sign sensitivity will determine whether to consider the par-

ent PDG code exactly, or the absolute value of the PDG code. The sign sensitivity also

determines what default parameters are set up. The publicly accessible SetDefaults func-

tion is called automatically in the Parameters constructor. This function sets up the Nu-

Flav vector with the NuFlav::AllNuFlavs function, sets up the Parent vector with the

Parent::AllParents function, and sets up the cross section vector with no cross section,

charged current, and neutral current. SetDefaults takes a boolean input for sign sensitivity

which is passed to its call to Parent::AllParents.

void Se tDe fau l t s (bool S i gnS en s i t i v e) ;

The call to SetDefaults within the Parameters constructor uses the same boolean input as

the boolean input to the constructor itself. However, the constructor later removes the tau

22

Table 3.4: Functions to remove each parameter. Each function is type void. The function
will remove all objects that match the input argument.

Function Input Type Meaning of Input
RemoveNuFlav int Neutrino PDG
RemoveNuFlav std::string Flavor Label
RemoveNuFlav NuFlav NuFlav Object
RemoveParent int Parent PDG
RemoveParent std::string Species Label
RemoveParent Parent Parent Object
RemoveXSec std::string Cross Section Interaction Process
RemoveDetector std::string Detector Label

and anti-tau neutrinos from the neutrino flavor vector.

The user can add or remove parameters by using the appropriate public member func-

tions. A NuFlav or Parent can be removed using RemoveNuFlav or RemoveParent, respec-

tively. Either of these functions can be called by inputting an int PDG, std::string parti-

cle name, or an object of the appropriate class. RemoveNuFlav simply calls the corresponding

version of the NuFlav::RemoveNuFlav function, and RemoveParent calls the corresponding

version of the Parent::RemoveNuParent function. RemoveXSec and RemoveDetector each

have a single version that takes as input a std::string corresponding to the name, or title,

of the object to remove. These functions are summarized in Table 3.4.

The functions to add a parameter are more specific, and generally require the an object

of the appropriate class as input. The exception is that there is no AddNuFlav function. For

neutrino flavors, the user must call ResetNuFlavs to repopulate the flavor vector with all of

the flavors, then remove undesired flavors. The tau and anti-tau neutrinos can be removed

together using the RemoveNuTaus function, which makes two calls to RemoveNuFlav. The

available functions to add parameters are summarized in Table 3.5.

As mentioned in the Detector section, the user can change the uses for a detector within

Parameters. This is done using the SetDetUses function with a detector label and number

of uses.

void SetDetUses (std : : s t r i n g detname , i n t nuses) ;

23

Table 3.5: Functions to add each parameter. Each function is type void. AddParent will
not add an object if one with the same PDG already exists, AddXSec will not add an object
if the name does not match an output from XSec::ListIntTypes and is not “NoXSec”, and
AddDetector will not add an object if one with the same label already exists.

Function Input Type Purpose of Function
ResetNuFlavs None Reset NuFlav vector to include all flavors
AddParent Parent Add given Parent object
AddXSec std::string Add given cross section interaction process
AddDetector Detector Add given Detector object

Table 3.6: Functions to get the current indices and the total number of each parameter.
Each function returns type int and takes no arguments.

Function Return
GetCurrentNuFlav Current Flavor fIndices.iFlav

GetCurrentParent Current Parent fIndices.iPar

GetCurrentXSec Current Cross Section fIndices.iXSec

GetCurrentDet Current Detector fIndices.iDet

GetCurrentMaster Current Master fIndices.GetCurrentMaster()

NFlav Number of Flavors fNuFlav.size()

NPar Number of Parents fParent.size()

NXSec Number of Cross Sections fXSec.size()

NDet Number of Detectors fDet.size()

The remaining member functions of Parameters generally have to do with indexing. The

user cannot access the private Indices object, but the public GetCurrent functions can return

the current indices. The number of each parameter can also be accessed via public member

functions. These functions are summarized in Table 3.6.

A limited amount of the information stored in each parameter vector can be accessed

using the current indices. The following public function declarations from Parameters.h show

what information is accessible.

/// Pul l a s to r ed de t e c t o r to c a l l i t s c l a s s f unc t i on s
Detector GetDetector (i n t i d e t) const ;

/// Pul l a s to r ed NuFlav to c a l l i t s c l a s s f un c t i on s
NuFlav GetNuFlav (i n t i f l a v) const ;

/// Shortcut to a c c e s s nece s sa ry f i e l d s
std : : s t r i n g GetDetName (i n t i d e t) const ;

24

Table 3.7: Functions that can alter the current indices stored in fIndices. Each object is
type bool indicating whether the function was successful in setting the index.

Function Input Parameter Goal of Function

SetCurrentNuFlav Neutrino PDG
Set flavor index to stored NuFlav

with matching PDG

SetCurrentParent Parent PDG
Set parent index to stored Parent

with matching PDG
SetCurrentXSec Cross Section Index Set cross section index to input
SetCurrentDet Detector Index Set detector index to input
SetIndices Master Index Set all indices to match input

i n t GetNuFlavPDG(in t i f l a v) const ;
i n t GetParentPDG(in t i p a r) const ;
s td : : s t r i n g GetXSecName (i n t i x s e c) const ;

The two remaining public functions, both named MaxMaster, allow the user to access

particular values of the master index.

i n t MaxMaster () const ;
i n t MaxMaster (i n t i d e t) const ;

When no input is specified, the function returns the true maximum master possible, the

product of the four totals of each parameter. When an input is specified, it is taken to be

the index of a specific detector, and the value returned is the product of the detector index

and the three remaining parameter totals, i.e., iDet × nXSec × nPar × nFlav. This second

version returns the maximum index for the specified detector (or rather, a value of 1 higher

than this).

Parameters has several private functions that aide indexing. First, the void UpdateIndices

function is called whenever a parameter is added or removed, which updates the parameter

totals within fIndices.

void UpdateIndices () ;

Various Set functions can alter the current indices within fIndices. These are summarized in

Table 3.7.

Since each master index refers to a unique set of four parameters, and every histogram

25

that is ultimately created from each parameter set needs a name, the NameTag function cre-

ates a unique label by conglomerating the four parameter labels separated by ‘ ’ characters.

std : : s t r i n g NameTag(i n t master) ;

Parameters has the ability to automatically loop over all of its parameters. It implements

the begin and end functions to accomplish this.

I nd i c e s begin () ;
I nd i c e s end () const ;

The begin function sets a Parameters object’s own fIndices current indices all to 0 and

returns this object. In particular, this keeps the total number of each parameter intact.

The end function creates a new Indices object and sets the total number of each parameter

to match that in fIndices, then sets the new object’s ‘current’ indices to be the maximum

possible, i.e., iDet = nDet, iFlav = iPar = iXSec = 0. Given a Parameters object

that has already been configured, the code below shows how to automatically loop over the

parameters.

// Assuming params i s a Parameters object ,
// and precon f i gu r ed in e a r l i e r code . . .
f o r (const auto& index : params) {

// Do something . . .
s td : : cout << index << ” , ” << params . GetCurrentMaster () << std : : endl ;

}

As a final note, Parameters makes every Spectra class, FluxReader, and Combiner a

friend class. When a Spectra is constructed, it makes use of the private Parameters copy

constructor to freeze the current set of parameters.

Parameters (const Parameters& params) ;

Combiner uses the private ClearAll function to make a dummy Parameters object that it

can build from the ground up. Calling ClearAll resets all of a Parameter object’s vectors

and sets all of its internal Indices variables to 0.

26

void ClearAl l () ;

3.6 Var and Weight

Filling a histogram with weighted events requires two important values, namely the value to

fill and the weight of the entry. The Var and Weight classes fulfill these roles. Both classes

are very similar in structure; they read specific variables from a single Dk2Nu neutrino ray

and return a single value based on an internally stored function. Despite their similarity,

they are not derived from a common mother; they are fully independent of each other.

3.6.1 Var

The Var class defined in Var.h and Var.cxx stores a function that returns a single value

based on a single Dk2Nu entry, and a list of variables it needs from the entry to evaluate its

function.

The function would need a Dk2Nu object at the very least to be evaluated. A typedef

is utilized to standardize the function type.

typede f double (VarFunc t) (const bsim : : Dk2Nu∗ nu , const i n t& i nuray) ;

The Dk2Nu object’s nuray branch is a vector, so the i_nuray input specifies which index to

use. With this definition, the Var stores a private function.

std : : funct ion<VarFunc t> fFunc ;

The other private variable stored by Var is a set of variables that the function needs to read.

std : : set<std : : s t r i ng> fBranches ;

The code does not check whether variables are accessed inside the function that are not in

the set of branches, but if this occurs, a segmentation fault is likely to occur at run time.

27

In order to evaluate the Var’s function, the function call operator is overloaded to take

the same inputs as the function. The code below from Var.h shows how this is implemented.

double operator () (const bsim : : Dk2Nu∗ nu , const i n t& i nuray)
{

re turn fFunc (nu , i nuray) ;
}

Var has two constructors, a standard and copy constructor. The copy constructor is used

by the Spectra class to store its own internal copy of the Var. The standard constructor

simply takes a set of branch names and a function. Common Var objects are defined in

Vars.h, and Vars.cxx ensures that they are built during compilation. The common energy

variable is printed below to demonstrate construction of a Var.

const Var kEnergy ({ ”nuray” , ”nuray .E” } ,
[] (const bsim : : NuRay∗ nu , const i n t& i nuray)
{ re turn nu−>nuray [i nuray] . E ; }) ;

The first part of the declaration, const Var kEnergy defines the type and variable name,

much the same as const int x. The first input in the constructor, {"nuray", "nuray.E"}

is the list of branch names needed by the function. The final two lines are a lambda function.

The first line of the lambda defines what the function will capture (nothing) and what the

function’s input will be (a Dk2Nu object and integer). The second line in the curly braces

is the actual function logic. This logic can span multiple lines of code by separating them

by the normal semicolon.

Since the integer input to the function specifies an index of the Dk2Nu nuray vector, any

variable that does not access this branch can omit i_nuray within the lambda function’s

input argument though const int& must always appear. This is demonstrated by the pz

variable below.

const Var kpz ({ ”decay” , ”decay . pdpz” } ,
[] (const bsim : : NuRay∗ nu , const i n t&)
{ re turn nu−>decay . pdpz ; }) ;

28

3.6.2 Weight

The Weight class, defined in Weight.h and Weight.cxx, is very similar to the Var class. The

main difference is that there are more inputs to the function for Weight than the function

for Var. The typedef utilized by Weight shows the enlarged set of inputs.

typede f double (WeiFunc t) (const double& w, const bsim : : Dk2Nu∗ nu ,
const i n t& i nuray , const TObject∗ extW) ;

Like Var, Weight stores a list of branches it needs to read from the Dk2Nu object, a

function it uses to evaluate, and overloads the function call operator. The list of branch

names is exactly the same between the two classes, the function and overloaded function call

operator reflect the inputs necessary for Weight.

std : : funct ion<WeiFunc t> fFunc ;

double operator () (const double& w, const bsim : : Dk2Nu∗ nu ,
const i n t& i nuray , const TObject∗ extW)

{
re turn fFunc (w, nu , i nuray , extW) ;

}

Weight also has two constructors, both a standard and copy constructor. The copy

constructor serves the same purposes as the Var copy constructor. The standard constructor

is set up nearly identically to that in Var, it simply requires the appropriate enlarged set of

inputs in the lambda function’s input set.

There are three Weight objects defined within Weight.h and Weight.cxx. These are a

default weight, no weight, and constant weight. The default weight, shown below, shows

that the double input w is exactly the default weight. Notice that, since this weight needs

only that input, the label for each of the other inputs is omitted.

const Weight kDefaultW ({} , [] (const double& w, const bsim : : Dk2Nu∗ ,
const i n t &, const TObject ∗)

{ re turn w; }) ;

29

The weight that applies no weight, kNoWeight, always returns 1, and the constant weight

must be called with a double value, c, and the weight will always return that weight.

The other input unique to the Weight function is the TObject pointer, extW. This input

allows for the application of external weights. When a Weight object is constructed that will

use external weights, any object that inherits from a TObject can be used. However, within

the function logic (in curly braces), the external weights must be cast as the class is actually

is in order to use that class’ functions. The FluxReader demo script Demo2 VarWeight.C

shows how this is done using a TSpline3. The Weight defined there is shown below.

const Weight kAppXSec({ ”nuray” , ”nuray .E” } ,
[] (const double& w, const bsim : : Dk2Nu∗ nu ,

const i n t& i nuray , const TObject∗ extW)
{ TSpline3 ∗ x s e c s p l i n e = (TSpline3 ∗)extW ;

double energy = nu−>nuray [i nuray] . E ;
double xsec = xs e c sp l i n e−>Eval (energy) ;
i f (xsec < 0 .) {

xsec = 0 . ;
}
re turn w∗ xsec ; }) ;

The first line of the function logic casts the external weight as the correct class; this allows for

usage of TSpline3::Eval. As a note, this Weight was created for demonstration purposes

only, and should not be otherwise used to apply cross sections.

The file Weights.h should be populated with commonly applied weights that are not

defaults defined in Weight.h and Weight.cxx. The file Weights.cxx ensures that these objects

are built during compilation.

3.7 Spectra

The Spectra class defined in Spectra.h and Spectra.cxx is designed to contain all of the

distributions that will be filled by FluxReader. Spectra itself is an abstract class that only

sets up some common machinery for its various daughters. A separate daughter class is

implemented for one, two, and three dimensional Spectra. A fourth daughter is implemented

30

flxrd::Spectra!

flxrd::Spectra1D! flxrd::SpectraCorrDet!flxrd::Spectra3D!flxrd::Spectra2D!

Figure 3.3: The inheritance structure of Spectra and its daughter classes.

for a Spectra type that plots a variable calculated at one detector location on its x axis and

the same variable calculated at a different detector location on its y axis. The inheritance

structure is shown in Figure 3.3. Every constructor for Spectra and its daughters is protected

or private, so the user cannot interface directly with this class. However, Spectra makes

FluxReader a friend class so it can create Spectra objects. (Each daughter class also explicitly

makes FluxReader a friend class.)

Since Spectra is an abstract class, it defines common variables and virtual functions,

though some functions are fully implemented. Each Spectra object stores a Parameters

object that determines how many and what histograms are created. A title is defined that

will label each histogram and be used an output directory name by FluxReader. Every

Spectra will have at least a Var for its x axis and a Weight to weight each event. If external

weights are needed, this object is stored as a TObject*.

Spectra stores a set of branch names needed by its weight and all its variables, and this set

is populated when Spectra is constructed. This list can be accessed using the BranchesToAdd

function.

std : : set<std : : s t r i ng> BranchesToAdd () const { re turn fBranches ; }

The Detectors function looks in the stored Parameters object and returns a set of Detector

objects the Spectra will use.

std : : set<Detector> Detector s () const ;

Cross sections needed for filling are stored as TSpline3 pointers in a std::map. The

spline is the value in the map, and the key is a std::string unique to each spline. This

key is generated using the XSecName function, which puts together the labels for a neutrino

31

flavor, interaction process, and detector name into one string.

std : : s t r i n g XSecName () ;

The splines are created and the map is populated by the SetupXSec function, which is called

in the Spectra constructor.

void SetupXSec () ;

This function loops through the stored Parameters object, makes the cross section key for

each parameter set, and if it is new, generates a new spline and adds it to the map.

The remaining fully implemented function simply returns the Spectra title.

std : : s t r i n g GetTit l e () const { re turn f T i t l e ; }

The remaining functions set up by the abstract class are all virtual. These functions,

implemented by Spectra’s daughters, are for accessing a specific histogram, filling the his-

tograms, and writing the histograms to a directory. The function declaration are shown

below.

v i r t u a l TH1∗ GetHist (i n t i h i s t) = 0 ;
v i r t u a l void F i l l (brim : : Dk2Nu∗ nu ,

std : : map<std : : s t r i ng , int> nurayInd ice s) = 0 ;
v i r t u a l void WriteHists (TDirectory ∗ d i r) = 0 ;

The map input for Fill is set up in FluxReader and matches a particular index of the

Dk2Nu nuray vector to a detector location.

As mentioned above, the constructor sets up the necessary cross section splines and

creates a list of Dk2Nu variables needed by its variables and weight. If no external weights

are needed, it sets its internal external weights object to the null pointer. Aside from the

branches needed by the variables and weights, Spectra adds some default branches. The

decay and nuray branches are automatically added. To differentiate neutrino flavor and

parent species, the variables containing these values, stored in the decay branch, are added.

Since cross sections are evaluated by energy, the nuray energy variable is automatically

32

added. Finally, the default weight mentioned in the Weight class requires the nuray branch

propagation weight, the decay branch importance weight (and a cross section), so these

variables are added.

3.7.1 Spectra1D, Spectra2D, Spectra3D

Spectra1D defined in Spectra1D.h and Spectra1D.cxx, Spectra2D defined in Spectra2D.h

and Spectra2D.cxx, and Spectra3D defined in Spectra3D.h and Spectra3D.cxx are all very

similar in design. Spectra1D is first discussed in detail, then the differences between it and

Spectra2D and Spectra3D are shown.

Spectra1D is the one dimensional implementation of the Spectra class. It adds the private

variable std::vector<TH1D*> fHists, a vector of one dimensional histograms. GetHist is

implemented to return a specific histogram from that vector.

Fill is implemented to fill multiple histograms. It gets the neutrino flavor and parent

species from the input Dk2Nu object and sets its internal Parameters object to these values

using the functions Parameters::SetCurrentNuFlav and Parameters::SetCurrentParent.

If those functions fail, Fill returns without filling any histograms. Assuming they both

succeed, it loops over detectors, cross sections, and detector uses (in that order with the

detectors loop as the outermost loop). The internal Parameters object is set to the current

detector and cross section within the appropriate loop, then the corresponding master index

is retrieved with Parameters::GetCurrentMaster. The histogram stored at that master

index is then filled with the Dk2Nu entry, multiple times smeared through the detector if

necessary. The value and weight to fill are computed using the overloaded function call

operators discussed in Var and Weight.

WriteHists creates subdirectories in the TDirectory* given as input, then writes the

stored histograms in these subdirectories. It creates a std::string to store the current

detector name. Next, a loop over all parameter sets as described in Parameters is started.

It sets the internal Parameters indices to the current index, then checks if the Detector label

33

is different from the previous iteration. If so, the current directory is moved to the top level

directory given as input to WriteHists and the current detector name is updated. The

top directory is searched for a subdirectory with the current detector, and it is created if it

does not exist. Either way, the current directory is moved to the detector subdirectory. The

histogram corresponding to the current master is then written in the current directory. Once

the loop terminates, the current directory is moved to that before WriteHists was called,

and the function returns.

Spectra1D also implements a new private function, CreateHists.

void CreateHi s t s (std : : s t r i n g labe lx , s td : : vector<double> binsx) ;

This function constructs all of the histograms to be filled and pushes them into the histogram

vector. They are generated in a loop over the internal Parameters object. Each histogram

is created to match the current parameter set, ensuring that Fill always fills the correct

histogram. The title of each histogram is set to the Spectra title followed by a ‘ ’ character

and the output from Parameters::NameTag. Every histogram is made with the same axis

label and binning; these are from the two inputs to CreateHists.

The constructor for Spectra1D is private, but accessible to FluxReader through friend-

ship. This constructor simply calls the base class constructor, then calls CreateHists to

set up the histogram vector. While the base class constructor requires a Parameters object,

title, x variable, weight, and optional external weight object, the Spectra1D constructor

also requires an x axis label and binning scheme. These extra parameters get passed to

CreateHists; they are not stored after construction. The different base constructor and

Spectra1D constructor are shown below.

Spectra (Parameters params , std : : s t r i n g t i t l e ,
const Var& varx , const Weight& weight ,
TObject∗ extWeights = nu l l p t r) ;

Spectra1D (Parameters params , std : : s t r i n g t i t l e ,
s td : : s t r i n g labe lx , std : : vector<double> binsx , const Var& varx ,
const Weight& weight , TObject∗ extWeights = nu l l p t r) ;

34

Spectra2D is the two dimensional implementation, and Spectra3D is the three dimen-

sional implementation of Spectra. They only have small differences from their one dimen-

sional sibling. First, the private histogram vector changes from storing TH1D* to TH2D* or

TH3D*. Spectra2D stores a second Var object for its y axis, while Spectra3D stores two extra

objects for its y and z axes.

GetHist and WriteHists are implemented identically. (They cannot be in the base class

since the base class does not have the vector of histograms.) Fill is the same for all three

siblings except for the line that actually fills the histogram–since the number of dimensions

differ, the number of arguments to the fill function differs. The higher dimensional version

only change the line by evaluating the extra stored Var objects.

Spectra2D and Spectra3D also create a private CreateHists function. They require an

additional axis label and binning (or two) for the additional axes, so this function could

not be a virtual function. The implementation only changes by adding axis labels to each

additional axis and using the histogram constructor for the appropriate dimension.

The constructors for Spectra2D and Spectra3D take additional axis labels and binnings,

but also require the additional Var objects as well. The base constructor and all three

dimensional daughter constructors are shown below.

Spectra (Parameters params , std : : s t r i n g t i t l e ,
const Var& varx , const Weight& weight ,
TObject∗ extWeights = nu l l p t r) ;

Spectra1D (Parameters params , std : : s t r i n g t i t l e ,
s td : : s t r i n g labe lx , std : : vector<double> binsx , const Var& varx ,
const Weight& weight , TObject∗ extWeights = nu l l p t r) ;

Spectra2D (Parameters params , std : : s t r i n g t i t l e ,
s td : : s t r i n g labe lx , std : : vector<double> binsx , const Var& varx ,
std : : s t r i n g labe ly , std : : vector<double> binsy , const Var& vary ,
const Weight& weight , TObject∗ extWeights = nu l l p t r) ;

Spectra3D (Parameters params , std : : s t r i n g t i t l e ,
s td : : s t r i n g labe lx , std : : vector<double> binsx , const Var& varx ,
std : : s t r i n g labe ly , std : : vector<double> binsy , const Var& vary ,
std : : s t r i n g l abe l z , s td : : vector<double> binsz , const Var& varz ,

35

const Weight& weight , TObject∗ extWeights = nu l l p t r) ;

Each constructor calls the base class constructor and its own implementation of CreateHists.

However, the two and three dimensional daughters also add the required branches for eval-

uating their y (and z) variables to their internal list of branch names.

3.7.2 SpectraCorrDet

SpectraCorrDet, defined in SpectraCorrDet.h and SpectraCorrDet.cxx, differs significantly

from the other Spectra. The goal of the SpectraCorrDet is to plot a single variable with its

value at one detector vs its value at a second detector. While being filled into an appropriate

two dimensional histogram, it is weighted by the weight at the y axis detector. At the same

time a one dimensional distribution of events at the x axis detector is stored using the weight

at the x axis detector. Once filling is complete, this one dimensional spectrum is used to

normalize each column of the final two dimensional distribution.

The normalization leads to another design decision. The basic dimensional spectra can

be combined by simply adding bin by bin, but this is not possible for the SpectraCorrDet.

The Combiner class performs that operation for the dimensional spectra, but this is done

automatically for the SpectraCorrDet. That way, the one dimensional normalization distri-

bution do not have to be written to file. This operation does not change the original plots,

but simply creates new ones that combine plots with either similar neutrino flavors or parent

species.

When a SpectraCorrDet is constructed, it creates and initializes two private booleans

to false; these indicate whether the histograms have been combined or normalized. This

class must store two histogram vectors, one for the desired two dimensional distributions,

and a second for the one dimensional normalizations. The Parameters detector indices

corresponding to the x and y detectors are also stored in private int variables.

GetHist and WriteHists are implemented nearly identically as with the dimensional

spectra, but before any operations are performed, the functions first check whether the

36

histograms have been normalized yet, and if not, calls the Normalize function.

void Normalize () ;

Normalize first checks whether the plots have been combined yet, and calls CombineAll if

not. It then sets the combined indicator boolean to true. Next it loops over all histograms in

the two dimensional histogram vector, pulls the corresponding normalization histogram, and

normalizes each column in the two dimensional histogram by the bin in the normalization

histogram. Once the loop terminates, the normalization indicator boolean is set to true.

Fill is implemented with some similarities to its dimensional siblings. The correct

neutrino flavor and parent species must be set, and a loop over cross sections must still be

performed. However, there is no loop over detectors. The two dimensional spectra must now

be filled by looping over both the x and y detector uses, while the one dimensional spectra

is filled only by looping over x detector uses. As mentioned previously, the weight at the x

detector is used for the normalization histograms, and the weight at the y detector is first

used for the full two dimensional histograms.

SpectraCorrDet also implements a CreateHists function. It requires the label of both

axis detectors, and a single axis label and binning. While looping over parameter sets, both

the one and two dimensional plots are created, ensuring their histogram vector indices match.

This loop does not go over the full parameter set; instead, it sets the internal Parameters

object to the y axis detector, and loops over all flavors, parents, and cross sections. When

actually constructing the histograms, the two dimensional histograms are given axis labels

in the form “Detector Name Label,” i.e., the detector label precedes the axis label for both

the x and y axes. These histograms are titled in several steps. The first puts the Spectra

title and output from Parameters::NameTag together into one string, separated by a ‘ ’

character. Since the name tag has the y axis detector at the end, this section is replaced by

the x axis and y axis detectors together, also separated by a ‘ ’ character. The title of the

two dimensional histogram is set to this string. The normalization plots are not given a title

or axis label since they do not get written to file.

37

The SpectraCorrDet constructor requires a slightly different set of inputs than its di-

mensional siblings. The base constructor, one dimensional constructor, and SpectraCorrDet

constructor are shown below.

Spectra (Parameters params , std : : s t r i n g t i t l e ,
const Var& varx , const Weight& weight ,
TObject∗ extWeights = nu l l p t r) ;

Spectra1D (Parameters params , std : : s t r i n g t i t l e ,
s td : : s t r i n g labe lx , std : : vector<double> binsx , const Var& varx ,
const Weight& weight , TObject∗ extWeights = nu l l p t r) ;

SpectraCorrDet (Parameters params , std : : s t r i n g t i t l e ,
s td : : s t r i n g detX , std : : s t r i n g detY ,
std : : s t r i n g labe lx , std : : vector<double> binsx ,
const Var& varx ,
const Weight& weight , TObject∗ extWeights = nu l l p t r) ;

The constructor first calls the base constructor, then checks that the Parameters object has

at least two detectors. If not, the code breaks. The internally stored indices corresponding

to the two detectors are set to -1. Next, the constructor loops over the Detectors in the

Parameters object and changes the internally stored detector indices to the correct value

when each detector is found. After the loop, the code breaks if either index remains at -1.

Lastly, the constructor calls CreateHists.

Three other private functions are implemented, shown below.

void CombineAll () ;
void CombineNuFlavs (std : : vector<TH2D∗>& newHists ,

s td : : vector<TH1D∗>& newNorms) ;
void CombineParents (std : : vector<TH2D∗>& newHists ,

s td : : vector<TH1D∗>& newNorms) ;

These functions add histograms together to create larger combined plots. They are very

similar to those found in Combiner, so they will be in Subsection 3.7.2.

38

3.8 FluxReader

The aptly named FluxReader actually reads the Dk2Nu files and provides each Spectra with

the information necessary to fill histograms.

A user must construct a FluxReader object with a file path name. The constructor

also takes two optional integer arguments. The path name can contain wildcard characters,

and it is immediately expanded with the Utilities Wildcard function into a private vector

of filenames. The first optional integer input specifies a maximum number of files to use,

and the second is a number of files to skip. The files to skip are removed from the front

of the filename vector. If what remains is larger than the first optional argument, files are

removed from the end of the filename vector. When the first integer is left at or set to 0, this

special value tells the constructor to not remove any files off the end of the vector. Lastly,

the constructor stores the name of the standard Dk2Nu tree, "dk2nuTree".

FluxReader has four AddSpectra functions, each corresponding to a specific daughter of

Spectra, and the inputs to each function call exactly match the inputs to their respective

constructors. Inside each of these functions, a Spectra objects is constructed and pushed

into a private vector, std::vector<Spectra*>. By setting up this vector as pointers to

the base class, it can contain any of the daughters. Ultimately, FluxReader only needs to

access Spectra::Fill and Spectra::WriteHists, and these are both declared in the base

class. AddSpectra also pulls the list of required branch names from each Spectra using

Spectra::BranchesToAdd and puts them into one master set.

Once the user has finished setting up spectra with AddSpectra, the user can then call

ReadFlux to do the real work. An output directory must be provided as input to the function.

ReadFlux essentially calls the FluxReader private functions in a specific order and then loops

over Dk2Nu entries. Each of these functions are introduced as necessary to ReadFlux.

void ReadFlux (TDirectory ∗ out) ;

ReadFlux begins by calling AddDefaultBranches.

39

void AddDefaultBranches () ;

Dk2Nu has the ability to project neutrino rays to different locations on the fly, changing

their propagation weights and energies accordingly. AddDefaultBranches adds the variables

required to do this to the master set. The next function call is InitialMessage, a function

that lets the user know that looping over flux files is imminent and outputs the titles of each

Spectra that will be created.

void In i t i a lMe s s a g e () ;

Next up is SetNuRayIndices.

void SetNuRayIndices () ;

This function calls Spectra::Detectors for each of its stored Spectra, and puts all of the

results into its own private set Detectors. It then loops over this master set, and sets up

a private map. The map keys are detector names, and the map values are integers. The

integers will correspond to nuray vector indices. A dummy integer is set to 0, and this is

the value for the first detector key. The dummy is incremented by the number of uses for

the first detector, and the result is the value for the next detector. This continues until the

last detector. Once the dummy has been incremented by the number of uses for the last

detector, the final result is used as the value for a special key, "znull". This will correspond

to the first out of bounds index of the nuray vector.

ReadFlux next creates a TChain* from all of the files in the filename vector, and calls

SetBranches with this chain.

void SetBranches (TTree∗ t r e e) ;

This function first sets every branch status to its input tree to 0, or off. It then sets its

private vector of actual TBranch* objects (as opposed to their name as a std::string) to

have enough size to contain as many elements as in the set of branch names. SetBranches

then loops over the branch names. Each branch in the set is turned back on in the input

40

tree, and the tree’s branch is added to the vector of TBranch* objects. If this operation fails,

the code will break. FluxReader stores a private Dk2Nu object, and the TTree* branch

addresses are set to this object. Every time TTree::GetEntry is called, the FluxReader

Dk2Nu object is repopulated with the values of the new entry. Next, SetBranches outputs

the names of all the branches that are turned on. Finally, the nuray vector in the FluxReader

Dk2Nu object is sized to the value stored by "znull" in the nuray indices map.

This is all of the preliminary steps for reading the flux files. ReadFlux then begins looping

over Dk2Nu entries from the input files. A message is output every 250000 entries and when

moving to the next tree (file). A running sum of the Dk2Nu potnum variable is computed

for each entry. Next each entry is reprojected to each detector location. The nuray index for

each detector is found from the nuray index map, and the reprojected values are stored at

the index in the FluxReader Dk2Nu object’s nuray branch. Since the index in the map was

incremented by the number of uses at each detector, there are enough consecutive entries in

the nuray vector to store a copy of each projection. When the number of uses is greater than

1, FluxReader smears each projection through the detector volume with the Smear function.

TVector3 Smear (const Detector& det , double r r = −1);

Smear gets half of each dimension using the Detector GetHalfSize functions, and for each

dimension picks a random point according to Equation 3.2.

−di/2 ≤ xi ≥ di/2 (3.2)

Smear currently supports rectangular and circular faces. When the parameter rr is specified,

the x and y random points are recalculated until x ∗ x+ y ∗ y ≤ r ∗ r.

Whether or not the projection location is smeared, the projection location is transformed

into beam coordinates with ToBeamCoords.

void ToBeamCoords (const Detector& det , TVector& xyz) ;

41

This function pulls the detector location using the Detector GetCoord functions, then trans-

forms the input coordinates according to Equation 3.3, where θ = 3.323155◦ is the beam

angle.

x → dx + x y

z

 →

 dy

dz

 +

 cos θ sin θ

− sin θ cos θ

 y

z

 (3.3)

Dk2Nu entries are reprojected to the location output by ToBeamCoords, and the results

of these projections are what get stored in the FluxReader Dk2Nu object.

At this point, the internal Dk2Nu object and nuray index map are given to each Spectra

for filling, and then the next loop iteration begins with the next entry.

Once the loop over entries is complete, ReadFlux outputs the total number of entries and

POT and begins the write out process. A POT histogram is created with a single bin set

to the total POT. This histogram, titled TotalPOT, is written out to the directory provided

as input to ReadFlux. Next, a loop over each Spectra object is performed. In the output

directory, a subdirectory is created that matches the title of current Spectra, and the current

directory is changed to that new directory. Spectra::WriteHists is called using the current

directory, which is the Spectra subdirectory. Once this loop terminates, all of the histograms

have been written out, the current directory is returned to that before ReadFlux was called,

and the function returns.

3.9 Combiner

The Combiner class, defined in Combiner.h and Combiner.cxx, is designed to combine certain

subsets of histograms produced by FluxReader. It will create new histograms by adding

together these subsets, but only for the basic one, two and three dimensional Spectra. The

Combiner constructor takes the path to a FluxReader output file as its only argument.

42

Combiner (std : : s t r i n g out) ;

The constructor will open the file for updating, so any new plots are appended inside the

relevant directories. Once the file is open, there is a loop over all objects in the top level file

directory. The name of any object that is a TDirectory is stored in a private set of Spectra

names. The name stored is the subdirectory name and title originally given to the Spectra.

The constructor next loops over all the Spectra it found in order to set up the Parameters

that were used to originally create them, but it first sets up a vector of label names in case

any of them are SpectraCorrDet objects. Inside the loop, local sets of labels are set up for

each of the four parameter types. The current directory is set to the current Spectra, and

another loop is performed over objects in this subdirectory. The label of any object that is

a TDirectory is added to the set of detectors. Once the inner loop finishes, the outer loop

proceeds based on the number of detectors found. If there were none, the current object was

a SpectraCorrDet and the name of this object is added to the vector set up outside the outer

loop. Otherwise, the current directory is moved to the first detector from the set. Inside

this subdirectory, a loop is performed over all objects, which should all be histograms. The

histogram name contains all the information about what parameter set was used to create

it. A local copy of this name is created and deconstructed bit by bit to get the name of the

neutrino flavor, parent species and cross section used in its generation. Each of these labels

is stored in their appropriate set. Once this second inner loop terminates, a new Paramters

object is constructed and set up with SetupParameters, discussed in more detail below.

This object is added to a map that has the Spectra label as a key and the Parameters object

as its value. Note that this is done regardless of what type of Spectra was in the current outer

loop iteration. Once the outer loop over all Spectra is finished, the Combiner constructor

loops over all SpectraCorrDet objects it found and erases each from the set of Spectra it has

stored. This leaves those particular entries in the stored map, but essentially erases where to

find the their keys. Lastly, the constructor calls InitialMessage, which outputs all of the

(remaining) Spectra names, and the number of all four parameters in their corresponding

43

Parameters objects.

void In i t i a lMe s s a g e () ;

The Combiner constructor makes use of the private SetupParameters function.

void SetupParameters (Parameters∗ params ,
std : : set<std : : s t r i ng>& dets ,
s td : : set<std : : s t r i ng>& nuf lavs ,
s td : : set<std : : s t r i ng>& parents ,
s td : : set<std : : s t r i ng>& xsec s) ;

This function removes all default parameters from the input Parameters object using the

Parameters::ClearAll function, then uses Parameters::ResetNuFlavs to add back in all

neutrino flavors. It then loops over all of these neutrino flavors and searches for each in the

input set of neutrino flavors. If a particular flavor is not found in the input, then it is removed

from the Parameters object. For the other three types of parameters, a loop is performed

over the input set adding each into the Parameters object using dummy objects. Combiner

only needs the parameter labels and does not care about things like position or PDG. Thus,

the Parent dummy is created using a PDG of 0 and each dummy created increments the

PDG by one, while using the correct label. For cross sections, no dummy needs to be set

up; the label is directly added to the Parameters object. For detectors, the dummy object

uses an empty target nucleus, positions and sizes of 0, and 0 uses.

Combiner has three public functions the user can use, each shown below.

void CombinerNuFlavs () ;
void CombinerParents () ;
void CombineAll () ;

All three behave similarly, so CombineNuFlavs will be shown in detail, then the differences

between this function and the other two will be discussed.

CombineNuFlavs looks for sets of histograms that share a constant parent species, applied

cross section, and detector location, and adds together all neutrino flavors. The resultant

histogram has a name in the same form as any other, and uses "allnu" as its flavor name.

44

If any histogram has this string as part of its name, then Combiner must have already been

performed, so CombineNuFlavs first checks for this condition with CombineAlreadyCalled.

bool CombineAlreadyCalled (std : : s t r i n g search) ;

This private function changes the current directory to the first detector in the first spectra

found in the Combiner input file. It then loops over histograms in this subdirectory, looking

for the input string in the histogram name. If the string exists in the name, then Combiner

was already called and the function returns true. Otherwise, the current directory is changed

back to what it was before CombineAlreadyCalled was called, and the function returns false.

CombineNuFlavs next begins a loop over all stored Spectra. The number of each param-

eter is pulled from the corresponding Parameters object, and three nested loops are started

over the detectors, cross sections and parents, with parents being the inner loop. Along the

way, the current directory is set to the current detector in the current spectra. Inside the

inner loop, a master index is crafted manually using the convention defined in Indices with

the current parent, cross section, and detector. The ‘current’ neutrino flavor is set to 0. The

name of a histogram is recreated using the current spectra label and Parameters::NameTag

function with the created index. This histogram will exactly match one in the input file to

Combiner, and it is cloned into a new histogram. A final nested loop is performed over neu-

trino flavors. In this loop, the crafted master index is incremented by one at each iteration,

matching the Indices convention. The new master index is used to update the recreated

histogram name, and each of these names is used to get a histogram from the input file.

These histograms are added to the one that was cloned from the input file.

Once the loop over neutrino flavors is finished, the final histogram’s name is updated.

The naming convention from the Parameters function Parameters::NameTag is exploited to

quickly find and replace the neutrino flavor name with the replacement string used in the call

toCombineAlreadyCalled. Finally, the histogram is appended to the current subdirectory.

Outside of all the nested loops, the current directory is reset to that before CombineNuFlavs

was called, and the function returns.

45

CombineParents is nearly identical to CombineNuFlavs. This function looks for sets of

histograms with common neutrino flavors, applied cross sections, and detectors, and adds

together all parent species. The biggest difference between the code in the two functions is

the order of nested loops; in CombineParents, the final two loops are switched so that a

loop over parent species is the inner most loop. The manually crafted master index must

also be calculated differently. The original index sets the first parent index to 0 instead

of the neutrino flavor index. Then, inside the inner loop over parents, the master index is

incremented by the total number neutrino flavors to correspond to the Indices convention

of incrementing the neutrino parent. Lastly, the replacement string sets the parent label to

"allpar"; this is also used in the function’s call to CombineAlreadyCalled.

CombineAll combines all histograms with a common applied cross section and detector,

resulting in the most generic plot of neutrinos. It is similar in structure to CombineNuFlavs

and CombineParents but has some important differences. Its call to CombineAlreadyCalled

searches for plots with both neutrino flavors and parent species already combined, using the

search string "allnu_allpar". Then, it calls both CombineNuFlavs and CombineParents.

This means that a user does not need to call either of those functions if CombineAll will

be called later. Histograms must still be added together to create the final results, but the

preceding combiner function calls mean that some of this work is already done. The set of

nested loops in CombineAll completely omits a loop over parents. When the master index

is manually set, the neutrino flavor and parent indices are set at 0. A histogram name

is recreated as before, but it is immediately modified by replacing the parent label with

"allpar". This ensures that the histogram pulled and cloned from the input file is one that

has already combined the parent species. A loop over neutrino flavors is then performed,

and the parent label is always replaced with the combined parents string before pulling a

histogram from the input file and adding it to the first, cloned histogram. The resultant

histogram has its neutrino flavor replaced with "allnu", and this final plot is appended to

the appropriate subdirectory.

46

3.9.1 SpectraCorrDet Combining

The functions that combine histograms in SpectraCorrDet have the same names as those

in Combiner, and are nearly identical copies. However, since the functions are part of the

SpectraCorrDet class, there is no need to create a new Parameters object. Instead, the

histograms can be pulled directly from the objects internal histogram vectors. The master

index is crafted the same way as in Combiner, but this type of spectra does not loop over

detectors, so the stored histogram vectors have indices that are offset from a true master.

The histogram vector index is created by removing this offset. The Parameters function

MaxMaster is called with the index of the detector before the y axis detector, and that value

is subtracted from the master index. Both the original master and histogram index are nec-

essary. The original master is used to recreate histogram names, while the histogram index

is needed to access and add or clone the correct plots. The histogram addition and name

replacement is performed the same way in SpectraCorrDet combine function as Combiner

combine functions, but since SpectraCorrDet ultimately needs to normalize its histograms,

each SpectraCorrDet combine function adds together its two dimensional plots and one di-

mensional normalization plots simultaneously.

The other major difference between the SpectraCorrDet and Combiner combine functions

is the input arguments to the flavor and parent combining functions in the SpectraCorrDet

versions. SpectraCorrDet::CombineAll still calls its class’ versions of CombineNuFlavs and

CombineParents. However, the results from both of those functions are stored in the two in-

put vectors. CombineAll uses separate vectors for the combined flavor and combined parent

histograms. When SpectraCorrDet::CombineAll proceeds in combining neutrino flavors

from the already combined parent plots, it can simply add together all the histograms in the

combined parent vector, instead of recreating a histogram name and modifying its parent

label with "allpar". Once SpectraCorrDet::CombineAll is finished creating new his-

tograms, it appends the results to the stored vectors of two and one dimensional histograms

starting with the combined neutrino flavor vectors and combined parent species vectors. It

47

lastly adds the histograms made directly within the SpectraCorrDet::CombineAll function

body. This order is chosen to match that from Combiner::CombineAll.

3.10 Reading Non-Dk2Nu Files

The FluxReader framework provides machinery to read non-Dk2Nu files. This functionality

has not been tested, so this section should be considered more as a design theory rather

than actual mechanics. Furthermore, the Dk2Nu package has the ability to convert files to

Dk2Nu format [9], so there should never be any reason to use these techniques.

FluxReader stores each neutrino ray entry in a Dk2Nu object, so any file must ultimately

be mapped to this object. The Utilities function OverrideAddresses creates this map.

std : : map<std : : s t r i ng , void∗> Overr ideAddresses (bsim : : Dk2Nu∗ nu) ;

This function outputs a map with a standard branch label as its key, and the address of an

actual Dk2Nu object as its value. The user must know the name of the non-standard branches

and what they correspond to in Dk2Nu. The FluxReader function OverrideDefaultVarName

will keep track of the differences.

void OverrideDefaultVarName (std : : s t r i n g oldname , std : : s t r i n g newname) ;

This function adds to a private map stored by FluxReader mapping Dk2Nu branch names to

non-standard branch names. The user must call this function with the Dk2Nu branch name

followed by the non-standard branch name for every non-standard branch needed. Since the

map to Dk2Nu branch names exists, all Var and Weight objects should be constructed with

Dk2Nu branch names.

The user must also call the FluxReader function OverrideTreeName if the tree storing

neutrino entries has a non-standard name.

void OverrideTreeName (std : : s t r i n g t reepath) ;

This function simply overwrites the path to the neutrino ray tree within the files to be read.

48

When FluxReader::SetBranches is called, it actually checks for override conditions.

The default discussed in Section 3.8 only occurs if the tree name is the default path and

the size of the map of standard to non-standard branch names is 0. When it is not, the

code executed before outputting active branches to the user changes, though all branches

are still turned off by default. First, a map using the Utilities OverrideAddresses function

is created using the FluxReader Dk2Nu object as input. A loop is next performed over all

necessary branches. The branch names should all be standard Dk2Nu names. The branch

name is searched for in the map of standard to non-standard branch names. If it is found,

the non-standard name is stored in a new local variable; otherwise, the standard branch is

copied into the local variable. Using the name stored in the local variable, the branch is

status is turned on in the flux file tree, and the branch address is set to the FluxReader

Dk2Nu object branch.

This should ensure the correct variables are read into the correct location. However, files

should be converted to Dk2Nu format [9] instead of using this method.

49

References

[1] R. Hatcher. Dk2Nu Package. https://cdcvs.fnal.gov/redmine/projects/dk2nu.

[2] R. Hatcher. Dk2Nu Tree Structure Source Code. https://cdcvs.fnal.gov/redmine/
projects/dk2nu/repository/entry/trunk/dk2nu/tree/dk2nu.h.

[3] G. Kafka. FluxReader Repository. https://cdcvs.fnal.gov/redmine/projects/

fluxreader/repository/show/trunk/FluxReader.

[4] R. Hatcher. Dk2Nu Repository.
https://cdcvs.fnal.gov/redmine/projects/dk2nu/repository.

[5] R. Brun et. al. ROOT Reference Guide.
http://root.cern.ch/root/html534/ClassIndex.html.

[6] G. Kafka. FluxReader Framework.
https://cdcvs.fnal.gov/redmine/projects/fluxreader.

[7] G. Kafka. FluxReader Framework Wiki.
https://cdcvs.fnal.gov/redmine/projects/fluxreader/wiki.

[8] C. Backhouse. NOνASoft CAFAna Framework. https://cdcvs.fnal.gov/redmine/
projects/novaart/repository/show/trunk/CAFAna.

[9] R. Hatcher. Dk2Nu Package Wiki, “Converting old files.” https://cdcvs.fnal.gov/

redmine/projects/dk2nu/wiki#Converting-old-files.

50

https://cdcvs.fnal.gov/redmine/projects/dk2nu
https://cdcvs.fnal.gov/redmine/projects/dk2nu/repository/entry/trunk/dk2nu/tree/dk2nu.h
https://cdcvs.fnal.gov/redmine/projects/dk2nu/repository/entry/trunk/dk2nu/tree/dk2nu.h
https://cdcvs.fnal.gov/redmine/projects/fluxreader/repository/show/trunk/FluxReader
https://cdcvs.fnal.gov/redmine/projects/fluxreader/repository/show/trunk/FluxReader
https://cdcvs.fnal.gov/redmine/projects/dk2nu/repository
http://root.cern.ch/root/html534/ClassIndex.html
https://cdcvs.fnal.gov/redmine/projects/fluxreader
https://cdcvs.fnal.gov/redmine/projects/fluxreader/wiki
https://cdcvs.fnal.gov/redmine/projects/novaart/repository/show/trunk/CAFAna
https://cdcvs.fnal.gov/redmine/projects/novaart/repository/show/trunk/CAFAna
https://cdcvs.fnal.gov/redmine/projects/dk2nu/wiki#Converting-old-files
https://cdcvs.fnal.gov/redmine/projects/dk2nu/wiki#Converting-old-files

	Abstract
	List of Figures
	List of Tables
	Introduction
	Framework Setup
	Access and Permissions
	Setup
	Compilation
	Running Macros
	ROOT Environment Setup
	Compiled ROOT Macros

	How FluxReader Works
	Utilities
	Detector
	ParticleParam
	NuFlav
	Parent

	XSec
	Parameters
	Indices
	Parameters

	Var and Weight
	Var
	Weight

	Spectra
	Spectra1D, Spectra2D, Spectra3D
	SpectraCorrDet

	FluxReader
	Combiner
	SpectraCorrDet Combining

	Reading Non-Dk2Nu Files

	References

